👉 The corresponding versions between TF and Cuda.
# check if GPU available?
import tensorflow as tf
tf.config.list_physical_devices('GPU')
# prevent tf uses gpu
# add below before any tf import
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
👉 Official guide. 👉 Note: Docker & GPU .
The advantage of this method is that you only have to install GPU driver on the host machine.
docker --version
👉 Different types of images for tensorflow.
# pull the image
docker pull tensorflow/tensorflow:latest-gpu-jupyter
# run a container
mkdir ~/Downloads/test/notebooks
docker run --name docker_thi_test -it --rm -v $(realpath ~/Downloads/test/notebooks):/tf/notebooks -p 8888:8888 tensorflow/tensorflow:latest-gpu-jupyter
# check if gpu available?
nvidia-smi
# check if tf2 working?
docker exec -it docker_thi_test bash
python
import tensorflow as tf
tf.config.list_physical_devices('GPU')
👉 Read Docker & GPU instead.
Update later…
On my computer, Dell XPS 15 7590 - NVIDIA® GeForce® GTX 1650 Mobile.
<aside> 🚨 This section is not complete, the guide is still not working!
</aside>